An Empirical Study and Analysis of Generalized Zero-Shot Learning for Object Recognition in the Wild

Wei-Lun Chao*1, Soravit Changpinyo*1, Boqing Gong2, and Fei Sha1,3 ¹U. of Southern California, ²U. of Central Florida, ³U. of California, Los Angeles

NSF IIS-1566511, 1065243, 1451412, 1513966, 1208500, CCF-1139148, USC Graduate Fellowship, a Google Research Award, an Alfred P. Sloan Research Fellowship and ARO# W911NF-12-1-0241 and W911NF-15-1-0484.

Highlights

- Study generalized zero-shot learning (GZSL) Test data & possible labels from BOTH Seen + Unseen classes, not just from Unseen ones.
- Propose an effective calibration method to adapt ZSL algorithms to perform well in GZSL
- Develop a metric AUSUC for GZSL evaluation
- Establish a performance upper bound of GZSL via idealized semantic embeddings

ZSL vs. Generalized ZSL

- **Seen** classes come with labeled examples. Unseen classes come without.
- Goal: Expand classifiers and label space from Seen classes to Unseen ones = dealing with long-tailed object distributions and recognition in the wild
- Relate Seen and Unseen classes with **Semantic** embeddings (attributes, word vectors, etc.)

stripes, mane, snout

- Training: Learn from Seen classes' images and semantic embeddings
- Testing:

(Conventional) Zero-Shot Learning (ZSL)

Classifying images from Unseen into the label space of **Unseen**

Generalized Zero-Shot Learning (GZSL)

Classify images from BOTH Seen + Unseen into the label space of BOTH Seen + Unseen

Much more challenging!

ZSL algorithms in GZSL setting

Joint labeling space of Seen (S) and Unseen (U):

$$\mathcal{T} = \mathcal{S} \cup \mathcal{U}$$

- Scoring function for each class $f_c(\boldsymbol{x}), \forall c \in \mathcal{T}$
 - ➤ DAP [Lampert et al., CVPR 09]: $f_u(\boldsymbol{x}) = \boldsymbol{w}(\boldsymbol{a}_u)^{\mathrm{T}} \boldsymbol{x}$
 - \triangleright ConSE [Norouzi et al., ICLR 14]: $f_n(x) = \cos(s(x), a_n)$
 - ightharpoonup SynC [Changpinyo et al., CVPR 16]: $f_n(x) = P(a_n|x)$
- Classification by Direct Stacking

$$\hat{y} = \arg\max_{c \in \mathcal{T}} f_c(\boldsymbol{x})$$

	AwA				CUB			
Method	$A_{\mathcal{U} \to \mathcal{U}}$	$A_{S \to S}$	$A_{\mathcal{U} \to \mathcal{T}}$	$A_{S \to T}$	$A_{\mathcal{U} \to \mathcal{U}}$	$A_{S \to S}$	$A_{\mathcal{U} \to \mathcal{T}}$	$A_{S \to T}$
DAP	51.1	78.5	2.4	77.9	38.8	56.0	4.0	55.1
ConSE	63.7	76.9	9.5	75.9	35.8	70.5	1.8	69.9
SynC	73.4	81.0	0.4	81.0	54.4	73.0	13.2	72.0

 $A_{Z\to V}$: Accuracy of classifying images from **Z** into the space of **Y**

Proposed Calibration Method & Metric

Classification by Calibrated Stacking

$$\hat{y} = \arg\max_{c \in \mathcal{T}} \quad f_c(\boldsymbol{x}) - \frac{\gamma}{\gamma} \mathbb{I}[c \in \mathcal{S}]$$

 $\gamma \to +\infty$ All into U

$$\gamma o -\infty$$
 All into S

 $\gamma = 0$ Direct stacking

- Area Under Seen Unseen accuracy Curve (AUSUC)
 - > Varying the calibration factor leads to Seen-Unseen Accuracy Curve (SUC) of $(A_{\mathcal{U} \to \mathcal{T}}, A_{\mathcal{S} \to \mathcal{T}})$
 - > Area Under SUC (AUSUC) as the metric for GZSL

Experiments & Analysis

- Datasets (|S|/|U|): AwA (40/10), CUB (150/50), ImageNet (1,000/20,842)
- Semantic embeddings: attributes for AwA/CUB, word vectors for ImageNet
- Visual features: 1,024-dim GoogLeNet features
- Evaluation: AUSUC on (class-normalized) classification accuracy or Flat Hit@K AwA /CUB: also test on reserved 20% of data from the S seen classes ImageNet: also test on validation set

Which ZSL method is more robust to GZSL?

	Unseen	Method	Flat hit@K			
	classes		1	5	10	20
	2-hop (1,509)	ConSE	0.042	0.168	0.247	0.347
	(1,509)	SynC	0.044	0.218	0.338	0.466
	All	ConSE	0.007	0.030	0.048	0.073
	(20,345)	SynC	0.006	0.034	0.059	0.097

How far are we from the *ideal* multi-class & GZSL performance?

Analysis on ImageNet-2K: |U| = 1000

- > Multi-class classifiers trained on data from S & U
- > Idealized semantic embeddings (G-attr)
 - = Average of visual features for each class

	Method	Flat hit@K				
		1	5	10	20	
	WORD2VEC	0.04	0.17	0.27	0.38	
	G-attr from 1 image	0.08	0.25	0.33	0.42	
	G-attr from 10 images G-attr from all images	0.20	0.50	0.62	0.72	
	G-attr from all images	0.25	0.58	0.69	0.79	
Mul	ti-class classification	0.35	0.66	0.75	0.82	

Flat hit@K(K = 1/5)

WORD2VEC: 0.006/0.034 G-attr from 1 image: 0.018/0.071 G-attr from all images 0.067/0.236

