Depth-aware Video Magnification

Julian F. P. Kooij and Jan C. van Gemert

1 Delft University of Technology, 2 Leiden University Medical Center, The Netherlands

1 Contributions
- Use depth cue to magnify motion of occluded regions
- Depth-Aware Steerable Pyramids
- Generalize the Fast Bilateral Filter to Non-Gaussian bilateral filters
- Application on and RGB+D dataset for tremors measurement

2 Main motivation
- Medical application of full body tremor assessment
- Real-world hospital setting (e.g., Parkinson patients)
- Need to discover and measure small motions in arms, body, head, with minimum patient effort
- Should be robust against viewpoint, self-occlusions, and presence of large motions
- Other uses of our novel filter explored in Sup. Mat.

3 Example magnification task
- Magnify small motions in body, but large movements in foreground

4 Magnification comparison to state-of-the-art
- [1] Wadhwa et al., SIGGRAPH'13
- Phase-based motion magnification:
 - Per frame, build complex steerable pyramid
 - Amplify temporal variations of complex pyramid coefficients
 - Reconstruct video from amplified pyramids
- Problem: magnifies small & large motions equally

5 Processing pipeline comparison
- [2] uses fg.mask only at last step; we use it directly in pyramid representation
- **Baseline [2]**
- [Ours] Depth-aware motion magnification

6 Measuring motion task
- Steerable Pyramids also used for motion measurement
 - "Leaking" into background affects measurement too
 - Using our bilateral pyramid is therefore more robust

7 More single frame magnification comparisons

8 Building a steerable pyramid
- Our novel non-Gaussian bilateral filter generalizes the Fast Bilateral Filter [3]
 - Given input image \(I(x) \), depth image \(z(x) \), and let \(x, y, z \) be 2D image locations
 - The **standard bilateral filter** outputs \(O(x) \), using Gaussian kernel \(G(d; \sigma) \)
 \[
 O(x) = \frac{1}{W(x)} \sum_{y \in N(x)} G(d, \sigma) \cdot I(y) \\
 W(d) = \frac{1}{d} \cdot \frac{1}{\sigma} \cdot \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{d^2}{2\sigma^2}}
 \]
 - Our **non-Gaussian bilateral filter** \(O^\times(x) \) for non-Gaussian kernels \(F(d) \)
 \[
 O^\times(x, \xi) = \frac{1}{W(x, \xi)} \sum_{y \in N(x)} F(|x-y|, \xi) \cdot I(y)
 \]
- Here \(O^\times(x, \xi) \) is a volumetric representation (2D image + 1D depth) that magnifies small & large motions equally

9 Non-Gaussian bilateral experiments
- Study non-Gaussian filters on images + binary mask
 - Ideally, filter ignores intensity within masked region
 - Compare our method to using inpainting techniques
 - Tested on steerable filters and ConvNet filters
- **Result:** Inpainting yields large responses; Our method is fast, has minimum response

10 References, acknowledgements, and code
- [2] Elgharib et al., CVPR’15

Acknowledgments: This work is part of the research programme Technology in Motion (TIM [628.004.001]), financed by the Netherlands Organisation for Scientific Research (NWO)

Code: github.com/jkooij/depthaware-momag

Project page: tim.lumc.nl