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Motivations Overview

» While MRF provides a generic framework for modeling images, We consider each pixel x is
the edge potential is largely limited by simplistic functions. associated with a hidden state h.
« We wish to improve the expressive power by modeling the

inter-pixel relations via deep factors. h

http://github.com/zhirongw/deep-mrf
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Learning via Coupled Passes

Example activations:

Decouple a cyclic graph into multiple acylic passes
while maintaining full contextual reasoning.
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Texture Synthesis Image Generation

Combines with VAE for global structure.
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