Transfer Neural Trees for Heterogeneous Domain Adaptation

Weï–Yu Chen1,2, Tzu-Ming Hsu2, Yao-Hung Tsai3, Yu-Chiang Frank Wang2, Ming-Syan Chen1
1 Graduate Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan
2 Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
3 Department of Machine Learning, Carnegie Mellon University, Pittsburgh, USA

Introduction

- Domain adaptation:
 Address the same learning task across different domains
- Heterogeneous domain adaptation:
 Source and target-domain data are described by distinct types of features.

Related Works

- Map cross-domain data onto a common subspace for classification
- Jointly learning of mapping & classification functions from cross-domain labeled data [1]
- Project cross-domain data for suppressing domain differences [2]
- A pair of DNNs with shared parameters for matching cross-domain data. [3]

Proposed Method

- Transfer Neural Trees (TNT)
 - Source-domain mapping \(f_S \)
 - Target-domain mapping \(f_T \)
 - Prediction layer \(G \)

 \[D_S = [X_S, Y_S] \text{: Labeled source-domain data} \]
 \[D_T = [X_T, Y_T] \text{: Labeled target-domain data} \]
 \[D_U = [X_U, Y_U] \text{: Unlabeled target-domain data} \]

- Learning \(f_S \) and \(G \):
 - Minimize prediction loss \(L_p \) of source-domain data \(X_S \)
 \[\min_{f_S, G} \sum_{(x,y) \in D_S} L_p(f_S(x), y) + \lambda \sum_{(x,y) \in D_U} L_p(f_S(x), y) \]

- Learning \(f_T \) with fixed \(G \) (semi-supervised learning):
 - Minimize prediction loss \(L_p \) of target-domain labeled data \(X_L \)
 - Minimize embedding loss \(L_e \) of target-domain labeled & unlabeled data
 \[\min_{f_T} \sum_{(x,y) \in D_T} L_e(f_T(x), y) + \lambda \sum_{(x,y) \in D_U} L_e(f_T(x), y) \]

 - \(L_p(f_S(x), y) = -log \left(\frac{P(y|x)}{P(y|x)} \right) \)
 - \(L_e(f_T(x), y) = -log \left(\frac{P(y|x)}{P(y|x)} \right) \)

 - Increase prediction consistency \(\rightarrow \) preserve structural consistency btw \(X_L \) & \(X_U \)

Experiments

- Datasets
 - Object recognition (10 classes):
 - Amazon: 959 DeCAF/SURF features
 - Webcam: 296 DeCAF/SURF features
 - Caltech: 1124 DeCAF/SURF features
 - Text-to-image recognition (8 classes):
 - NUS-WIDE tag data: 800 NN features
 - ImageNet: 800 DeCAF features

- Settings
 - Source domain: all data in dataset as \(X_S \)
 - Target domain: 3 per class as \(X_U \), the rest as \(X_U \)

Evaluation

- Cross Features
 - Cross Datasets (b: DeCAF > t: SURF)
 - Cross Datasets (b: NIM > t: DeCAF)
 - Cross Datasets (b: NIM > t: DeCAF image)
 - Cross Modalities (b: NIM/tag > t: DeCAF/IMAGE)

- Evaluation
 - Cross Features
 - Cross Datasets
 - Cross Modalities

Visualizations

- Different \(G \) in TNT

Conclusions

- TNT for semi-supervised & cross-domain deep learning
- Transfer-NDF with stochastic pruning for HDA
- Embedding loss in TNT for preserving prediction & structural consistency
- Promising results on cross-feature, domain, and modality classification tasks

Reference