Weakly Supervised Object Localization Using Size Estimates

Miaojing Shi and Vittorio Ferrari

Task
Weakly supervised object localization
input: motorbike

Current way: training on the entire set at the same time

Our way: curriculum learning using object size estimates

- **Size Order**
 - Big (easy)
 - Small (hard)

- **Size Weighting**

![Multiple Instance Learning (MIL) Baseline](image)

+ Size Order
Ground Truth

Method

RE-TRAINING

- Size Order

![RE-LOCALIZATION](image)

Size Weighting

Size weighting function

\[W(p; s_w, \sigma, \delta) = \min \left(\frac{1}{1 + e^{\delta (s_w - 3\sigma - s_p)}}, \frac{1}{1 + e^{\delta (s_p - s_w - 3\sigma)}} \right) \]

- \(s_w \): estimated object size;
- \(s_p \): window proposal size;
- \(\sigma \): stdev

Object detection

![Baseline](image)

Less accurate estimator only marginally affects inter-batch size order

Results on PASCAL VOC 07 (20 classes)

<table>
<thead>
<tr>
<th>MIL Baseline*</th>
<th>+ Size Order</th>
<th>+ Size Weighting</th>
<th>Ground Truth</th>
</tr>
</thead>
</table>

![Class – Chair](image)

* AlexNet features + Linear SVM + Objectness [Dollar ECCV14] *

- Both size order and size weight improve results
- Full system outperforms state-of-the-art

Input: 4096D CNN image features

- **Output:** size \(\sqrt{S_o}; \sigma \)

- **Method:** kernel ridge regression

- **Class-specific regressor**

- **Train:** PASCAL VOC 12 trainval
- **Test:** PASCAL VOC 07 trainval

Size Estimator

<table>
<thead>
<tr>
<th>N</th>
<th>Kendall’s (\tau)</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>0.614</td>
<td>0.013</td>
</tr>
<tr>
<td>100</td>
<td>0.561</td>
<td>0.016</td>
</tr>
<tr>
<td>50</td>
<td>0.542</td>
<td>0.018</td>
</tr>
<tr>
<td>40</td>
<td>0.530</td>
<td>0.019</td>
</tr>
<tr>
<td>30</td>
<td>0.527</td>
<td>0.020</td>
</tr>
</tbody>
</table>

\(N \) - number of training samples per class

Inter-batch order

\[
\text{recall} = \frac{|Q_{GT} \cap Q_{ES}|}{|Q_{GT}|}
\]

- \(Q_{GT} \): Ground truth sequence
- \(Q_{ES} \): Estimated sequence

Train on trainval, measure CorLoc; Test on test, measure mAP

<table>
<thead>
<tr>
<th>Method</th>
<th>CorLoc</th>
<th>mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>39.1</td>
<td>20.1</td>
</tr>
<tr>
<td>Our Scheme</td>
<td>46.3</td>
<td>24.9</td>
</tr>
<tr>
<td>Baseline</td>
<td>53.8</td>
<td>28.0</td>
</tr>
<tr>
<td>Cinbis PAMI16</td>
<td>60.9</td>
<td>36.0</td>
</tr>
<tr>
<td>Wang TIP15</td>
<td>43.2</td>
<td>24.7</td>
</tr>
<tr>
<td>Blen CVP15</td>
<td>54.2</td>
<td>28.6</td>
</tr>
<tr>
<td>Dollar ECCV14</td>
<td>48.5</td>
<td>31.6</td>
</tr>
<tr>
<td>Fast R-CNN [Girshick CVPR15]</td>
<td>43.7</td>
<td>27.7</td>
</tr>
</tbody>
</table>

- Both size order and size weight improve results
- Full system outperforms state-of-the-art

Deep v.s. Deeper

- AlexNet [Krizhevsky NIPS12] 60.9
- VGG16 [Simonyan ICLR15] 64.7
- Baseline: 0.464

Size estimator: training set size

- \(N=\text{ALL} \)
- \(N=50 \)
- \(N=30 \)

Size estimator: generalization across classes

- class-specific
- class-generic
- across-class

Weakly supervised object localization

Our way: curriculum learning using object size estimates

- Current way: training on the entire set at the same time

- **Size Order**
 - Big (easy)
 - Small (hard)

- **Size Weighting**

Input: 4096D CNN image features

Output: size

Method: kernel ridge regression

Class-specific regressor

Train: PASCAL VOC 12 trainval

Test: PASCAL VOC 07 trainval

\(\sigma \): stdev

Deep v.s. Deeper

- AlexNet [Krizhevsky NIPS12] 60.9
- VGG16 [Simonyan ICLR15] 64.7

AlexNet features + Linear SVM + Objectness [Dollar ECCV14] *